nilmtk.feature_detectors package

Submodules

nilmtk.feature_detectors.cluster module

nilmtk.feature_detectors.cluster.cluster(X, max_num_clusters=3)[source]

Applies clustering on reduced data, i.e. data where power is greater than threshold.

Parameters:

X : pd.Series or single-column pd.DataFrame

max_num_clusters : int

Returns:

centroids : ndarray of int32s

Power in different states of an appliance, sorted

nilmtk.feature_detectors.cluster.hart85_means_shift_cluster(pair_buffer_df, cols)[source]

nilmtk.feature_detectors.steady_states module

nilmtk.feature_detectors.steady_states.cluster(x, max_num_clusters=3)[source]

Applies clustering on reduced data, i.e. data where power is greater than threshold.

Parameters:

X : pd.Series or single-column pd.DataFrame

max_num_clusters : int

Returns:

centroids : ndarray of int32s

Power in different states of an appliance, sorted

nilmtk.feature_detectors.steady_states.find_steady_states(dataframe, min_n_samples=2, stateThreshold=15, noise_level=70)[source]

Finds steady states given a DataFrame of power

Parameters:

dataframe: pd.DataFrame with DateTimeIndex

min_n_samples(int): number of samples to consider constituting a

steady state.

stateThreshold: maximum difference between highest and lowest

value in steady state.

noise_level: the level used to define significant

appliances, transitions below this level will be ignored. See Hart 1985. p27.

nilmtk.feature_detectors.steady_states.find_steady_states_transients(metergroup, cols, noise_level, state_threshold, **load_kwargs)[source]

Module contents