Bases: nilmtk.node.Node
alias of DropoutRateResults
Parameters: | data : pd.DataFrame or pd.Series sample_period : number, seconds |
---|---|
Returns: | dropout_rate : float [0,1]
|
Bases: nilmtk.results.Results
Attributes
_data | (pd.DataFrame) index is start date for the whole chunk end is end date for the whole chunk dropout_rate is float [0,1] n_samples is int, used for calculating weighted mean |
Bases: nilmtk.node.Node
Locate sections of data where the sample period is <= max_sample_period.
Attributes
previous_chunk_ended_with_open_ended_good_section | (bool) |
alias of GoodSectionsResults
Parameters: | df : pd.DataFrame look_ahead : pd.DataFrame max_sample_period : number |
---|---|
Returns: | sections : list of TimeFrame objects
|
Bases: nilmtk.results.Results
Attributes
max_sample_period_td | (timedelta) |
_data | (pd.DataFrame) index is start date for the whole chunk end is end date for the whole chunk sections is a TimeFrameGroups object (a list of nilmtk.TimeFrame objects) |
Append a single result.
Parameters: | timeframe : nilmtk.TimeFrame new_results : {‘sections’: list of TimeFrame objects} |
---|
Merges together any good sections which span multiple segments, as long as those segments are adjacent (previous.end - max_sample_period <= next.start <= previous.end).
Returns: | sections : TimeFrameGroup (a subclass of Python’s list class) |
---|
Returns: | DataFrame with three columns: ‘end’, ‘section_end’, ‘section_start’.
|
---|
Apart from ‘generator’, takes the same key word arguments as numpy.histogram. And returns the same objects as np.histogram.
Parameters: | range : None or (min, max)
bins : None or int
|
---|
Bases: nilmtk.node.Node
alias of TotalEnergyResults
Calculate total energy for energy / power data in a dataframe.
Parameters: | df : pd.DataFrame max_sample_period : float or int |
---|---|
Returns: | energy : dict
|
Bases: nilmtk.results.Results
Attributes
_data | (pd.DataFrame) index is start date end is end date active is (optional) energy in kWh reactive is (optional) energy in kVARh apparent is (optional) energy in kVAh |
Append a single result. e.g. append(TimeFrame(start, end), {‘apparent’: 34, ‘active’: 43})